Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure.

نویسندگان

  • R J White
  • I J Reynolds
چکیده

A brief exposure to high concentrations of glutamate kills cultured forebrain neurons by an excitotoxic process that is dependent on Ca2+ influx through the NMDA receptor. In this study, we have measured striking changes in mitochondrial function during and immediately after intense glutamate receptor activation. Using indo-1 microfluorometry and a specific inhibitor of the mitochondrial Na+/Ca2+ exchanger, CGP-37157, we have demonstrated that mitochondria accumulate large quantities of Ca2+ during a toxic glutamate stimulus and further that Ca2+ efflux from mitochondria contributes to the prolonged [Ca2+]i elevation after glutamate removal. We then used JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine+ ++ iodide), a ratiometric indicator of mitochondrial membrane potential (delta psi), to show that Ca2+ accumulation within the organelle dissipates delta psi. The abrupt loss of delta psi after glutamate stimulation did not occur in the presence of MK801 or in the absence of extracellular Ca2+. The mitochondrial depolarization was also cyclosporin A-sensitive, indicating a probable role for the permeability transition pore. Hence mitochondrial Ca2+ accumulation and the subsequent permeability transition may be a critical early event specific to the NMDA receptor-mediated excitotoxic cascade.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial dysfunction and dendritic beading during neuronal toxicity.

Mitochondrial dysfunction (depolarization and structural collapse), cytosolic ATP depletion, and neuritic beading are early hallmarks of neuronal toxicity induced in a variety of pathological conditions. We show that, following global exposure to glutamate, mitochondrial changes are spatially and temporally coincident with dendritic bead formation. During oxygen-glucose deprivation, mitochondri...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

Inhibition of glutamate-induced mitochondrial depolarization by tamoxifen in cultured neurons.

In central neurons, glutamate receptor activation causes massive calcium influx and induces a mitochondrial depolarization, which is partially blocked by cyclosporin A, suggesting a possible activation of the mitochondrial permeability transition pore (PTP) as a mechanism. It has been recently reported that tamoxifen (an antiestrogen chemotherapeutic agent) blocks the PTP in isolated liver mito...

متن کامل

Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on rat cortical neurons.

Overstimulation of ionotropic glutamate receptors causes excitotoxic neuronal death contributing to neurodegenerative disorders. Massive influx of calcium in excitotoxicity provokes alterations in the membrane potential of mitochondria and increases the production of reactive oxygen species. Here we report that Mangifera indica L. extracts (MiE) prevent glutamate-induced excitotoxicity in prima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 18  شماره 

صفحات  -

تاریخ انتشار 1996